THE RADIUS OF CONVERGENCE AND THE WELL-POSEDNESS OF THE PAINLEVÉ EXPANSIONS OF THE KORTEWEG-DE-VRIES EQUATION Short Title: Well Posedness of Painlevé expansions

نویسندگان

  • Nalini Joshi
  • Gopala K. Srinivasan
چکیده

In this paper we obtain explicit lower bounds for the radius of convergence of the Painlevé expansions of the Korteweg-de-Vries equation around a movable singularity manifold S in terms of the sup norms of the arbitrary functions involved. We use this estimate to prove the well-posedness of the singular Cauchy problem on S in the form of continuous dependence of the meromorphic solution on the arbitrary data. §

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Problems around Corona

In this paper the ill-posedness of Shannons sampling theorem is discussed and a regularized sampling algorithm for band-limited signals is presented. The convergence of the regularized sampling algorithm is studied and compared with Shannons sampling theorem by some examples. Diestel, Geoff, University of South Carolina Title: Maximal Bilinear Singular Integral Operators Associated with Planar ...

متن کامل

The Wave Equation in Non-classic Cases: Non-self Adjoint with Non-local and Non-periodic Boundary Conditions

In this paper has been studied the wave equation in some non-classic cases. In the  rst case boundary conditions are non-local and non-periodic. At that case the associated spectral problem is a self-adjoint problem and consequently the eigenvalues are real. But the second case the associated spectral problem is non-self-adjoint and consequently the eigenvalues are complex numbers,in which two ...

متن کامل

On the Local Well-posedness of a 3D Model for Incompressible Navier-Stokes Equations with Partial Viscosity

In this short note, we study the local well-posedness of a 3D model for incompressible Navier-Stokes equations with partical viscosity. This model was originally proposed by Hou-Lei in [4]. In a recent paper, we prove that this 3D model with partial viscosity will develop a finite time singularity for a class of initial condition using a mixed Dirichlet Robin boundary condition. The local well-...

متن کامل

Convergence of capillary fluid models: from the non-local to the local Korteweg model

In this paper we are interested in the barotropic compressible Navier-Stokes system endowed with a non-local capillarity tensor depending on a small parameter ε such that it heuristically tends to the local Korteweg system. After giving some explanations about the capillarity (physical justification and purpose, motivations related to the theory of non-classical shocks (see [28])), we prove glo...

متن کامل

A regularization method for solving a nonlinear backward inverse heat conduction problem using discrete mollification method

The present essay scrutinizes the application of discrete mollification as a filtering procedure to solve a nonlinear backward inverse heat conduction problem in one dimensional space. These problems are seriously ill-posed. So, we combine discrete mollification and space marching method to address the ill-posedness of the proposed problem. Moreover, a proof of stability and<b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996